rechu.types package¶
Subpackages¶
Submodules¶
rechu.types.decorator module¶
Type decorators for model type annotation maps.
- class rechu.types.decorator.Convertible(value: object)[source]¶
Bases:
Protocol
A type which can be created from another input type.
- class rechu.types.decorator.SerializableType(*args: Any, **kwargs: Any)[source]¶
Bases:
TypeDecorator
,Generic
[T
,ST
]Type decoration handler for attributes.
- impl: TypeEngine = String()¶
- process_bind_param(value: T | None, dialect: Dialect) Any [source]¶
Receive a bound parameter value to be converted.
Custom subclasses of
_types.TypeDecorator
should override this method to provide custom behaviors for incoming data values. This method is called at statement execution time and is passed the literal Python data value which is to be associated with a bound parameter in the statement.The operation could be anything desired to perform custom behavior, such as transforming or serializing data. This could also be used as a hook for validating logic.
- Parameters:
value – Data to operate upon, of any type expected by this method in the subclass. Can be
None
.dialect – the
Dialect
in use.
- process_literal_param(value: T | None, dialect: Dialect) str [source]¶
Receive a literal parameter value to be rendered inline within a statement.
Note
This method is called during the SQL compilation phase of a statement, when rendering a SQL string. Unlike other SQL compilation methods, it is passed a specific Python value to be rendered as a string. However it should not be confused with the
_types.TypeDecorator.process_bind_param()
method, which is the more typical method that processes the actual value passed to a particular parameter at statement execution time.Custom subclasses of
_types.TypeDecorator
should override this method to provide custom behaviors for incoming data values that are in the special case of being rendered as literals.The returned string will be rendered into the output string.
- process_result_value(value: Any | None, dialect: Dialect) T | None [source]¶
Receive a result-row column value to be converted.
Custom subclasses of
_types.TypeDecorator
should override this method to provide custom behaviors for data values being received in result rows coming from the database. This method is called at result fetching time and is passed the literal Python data value that’s extracted from a database result row.The operation could be anything desired to perform custom behavior, such as transforming or deserializing data.
- Parameters:
value – Data to operate upon, of any type expected by this method in the subclass. Can be
None
.dialect – the
Dialect
in use.
- property python_type: type[Any]¶
Return the Python type object expected to be returned by instances of this type, if known.
Basically, for those types which enforce a return type, or are known across the board to do such for all common DBAPIs (like
int
for example), will return that type.If a return type is not defined, raises
NotImplementedError
.Note that any type also accommodates NULL in SQL which means you can also get back
None
from any type in practice.
rechu.types.quantized module¶
Attribute types for numeric values with discrete precision.
- class rechu.types.quantized.GTIN[source]¶
Bases:
int
Global trade item number identifier for products.
- class rechu.types.quantized.GTINType(*args: Any, **kwargs: Any)[source]¶
Bases:
SerializableType
Type decoration handler for GTINs.
- cache_ok: bool | None = True¶
Indicate if statements using this
ExternalType
are “safe to cache”.The default value
None
will emit a warning and then not allow caching of a statement which includes this type. Set toFalse
to disable statements using this type from being cached at all without a warning. When set toTrue
, the object’s class and selected elements from its state will be used as part of the cache key. For example, using aTypeDecorator
:class MyType(TypeDecorator): impl = String cache_ok = True def __init__(self, choices): self.choices = tuple(choices) self.internal_only = True
The cache key for the above type would be equivalent to:
>>> MyType(["a", "b", "c"])._static_cache_key (<class '__main__.MyType'>, ('choices', ('a', 'b', 'c')))
The caching scheme will extract attributes from the type that correspond to the names of parameters in the
__init__()
method. Above, the “choices” attribute becomes part of the cache key but “internal_only” does not, because there is no parameter named “internal_only”.The requirements for cacheable elements is that they are hashable and also that they indicate the same SQL rendered for expressions using this type every time for a given cache value.
To accommodate for datatypes that refer to unhashable structures such as dictionaries, sets and lists, these objects can be made “cacheable” by assigning hashable structures to the attributes whose names correspond with the names of the arguments. For example, a datatype which accepts a dictionary of lookup values may publish this as a sorted series of tuples. Given a previously un-cacheable type as:
class LookupType(UserDefinedType): '''a custom type that accepts a dictionary as a parameter. this is the non-cacheable version, as "self.lookup" is not hashable. ''' def __init__(self, lookup): self.lookup = lookup def get_col_spec(self, **kw): return "VARCHAR(255)" def bind_processor(self, dialect): # ... works with "self.lookup" ...
Where “lookup” is a dictionary. The type will not be able to generate a cache key:
>>> type_ = LookupType({"a": 10, "b": 20}) >>> type_._static_cache_key <stdin>:1: SAWarning: UserDefinedType LookupType({'a': 10, 'b': 20}) will not produce a cache key because the ``cache_ok`` flag is not set to True. Set this flag to True if this type object's state is safe to use in a cache key, or False to disable this warning. symbol('no_cache')
If we did set up such a cache key, it wouldn’t be usable. We would get a tuple structure that contains a dictionary inside of it, which cannot itself be used as a key in a “cache dictionary” such as SQLAlchemy’s statement cache, since Python dictionaries aren’t hashable:
>>> # set cache_ok = True >>> type_.cache_ok = True >>> # this is the cache key it would generate >>> key = type_._static_cache_key >>> key (<class '__main__.LookupType'>, ('lookup', {'a': 10, 'b': 20})) >>> # however this key is not hashable, will fail when used with >>> # SQLAlchemy statement cache >>> some_cache = {key: "some sql value"} Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: unhashable type: 'dict'
The type may be made cacheable by assigning a sorted tuple of tuples to the “.lookup” attribute:
class LookupType(UserDefinedType): '''a custom type that accepts a dictionary as a parameter. The dictionary is stored both as itself in a private variable, and published in a public variable as a sorted tuple of tuples, which is hashable and will also return the same value for any two equivalent dictionaries. Note it assumes the keys and values of the dictionary are themselves hashable. ''' cache_ok = True def __init__(self, lookup): self._lookup = lookup # assume keys/values of "lookup" are hashable; otherwise # they would also need to be converted in some way here self.lookup = tuple( (key, lookup[key]) for key in sorted(lookup) ) def get_col_spec(self, **kw): return "VARCHAR(255)" def bind_processor(self, dialect): # ... works with "self._lookup" ...
Where above, the cache key for
LookupType({"a": 10, "b": 20})
will be:>>> LookupType({"a": 10, "b": 20})._static_cache_key (<class '__main__.LookupType'>, ('lookup', (('a', 10), ('b', 20))))
Added in version 1.4.14: - added the
cache_ok
flag to allow some configurability of caching forTypeDecorator
classes.Added in version 1.4.28: - added the
ExternalType
mixin which generalizes thecache_ok
flag to both theTypeDecorator
andUserDefinedType
classes.See also
- impl: TypeEngine = BigInteger()¶
- class rechu.types.quantized.Price(value: Decimal | float | str)[source]¶
Bases:
Decimal
Price type with scale of 2 (number of decimal places).
- class rechu.types.quantized.PriceType(*args: Any, **kwargs: Any)[source]¶
Bases:
SerializableType
Type decoration handler for prices.
- cache_ok: bool | None = True¶
Indicate if statements using this
ExternalType
are “safe to cache”.The default value
None
will emit a warning and then not allow caching of a statement which includes this type. Set toFalse
to disable statements using this type from being cached at all without a warning. When set toTrue
, the object’s class and selected elements from its state will be used as part of the cache key. For example, using aTypeDecorator
:class MyType(TypeDecorator): impl = String cache_ok = True def __init__(self, choices): self.choices = tuple(choices) self.internal_only = True
The cache key for the above type would be equivalent to:
>>> MyType(["a", "b", "c"])._static_cache_key (<class '__main__.MyType'>, ('choices', ('a', 'b', 'c')))
The caching scheme will extract attributes from the type that correspond to the names of parameters in the
__init__()
method. Above, the “choices” attribute becomes part of the cache key but “internal_only” does not, because there is no parameter named “internal_only”.The requirements for cacheable elements is that they are hashable and also that they indicate the same SQL rendered for expressions using this type every time for a given cache value.
To accommodate for datatypes that refer to unhashable structures such as dictionaries, sets and lists, these objects can be made “cacheable” by assigning hashable structures to the attributes whose names correspond with the names of the arguments. For example, a datatype which accepts a dictionary of lookup values may publish this as a sorted series of tuples. Given a previously un-cacheable type as:
class LookupType(UserDefinedType): '''a custom type that accepts a dictionary as a parameter. this is the non-cacheable version, as "self.lookup" is not hashable. ''' def __init__(self, lookup): self.lookup = lookup def get_col_spec(self, **kw): return "VARCHAR(255)" def bind_processor(self, dialect): # ... works with "self.lookup" ...
Where “lookup” is a dictionary. The type will not be able to generate a cache key:
>>> type_ = LookupType({"a": 10, "b": 20}) >>> type_._static_cache_key <stdin>:1: SAWarning: UserDefinedType LookupType({'a': 10, 'b': 20}) will not produce a cache key because the ``cache_ok`` flag is not set to True. Set this flag to True if this type object's state is safe to use in a cache key, or False to disable this warning. symbol('no_cache')
If we did set up such a cache key, it wouldn’t be usable. We would get a tuple structure that contains a dictionary inside of it, which cannot itself be used as a key in a “cache dictionary” such as SQLAlchemy’s statement cache, since Python dictionaries aren’t hashable:
>>> # set cache_ok = True >>> type_.cache_ok = True >>> # this is the cache key it would generate >>> key = type_._static_cache_key >>> key (<class '__main__.LookupType'>, ('lookup', {'a': 10, 'b': 20})) >>> # however this key is not hashable, will fail when used with >>> # SQLAlchemy statement cache >>> some_cache = {key: "some sql value"} Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: unhashable type: 'dict'
The type may be made cacheable by assigning a sorted tuple of tuples to the “.lookup” attribute:
class LookupType(UserDefinedType): '''a custom type that accepts a dictionary as a parameter. The dictionary is stored both as itself in a private variable, and published in a public variable as a sorted tuple of tuples, which is hashable and will also return the same value for any two equivalent dictionaries. Note it assumes the keys and values of the dictionary are themselves hashable. ''' cache_ok = True def __init__(self, lookup): self._lookup = lookup # assume keys/values of "lookup" are hashable; otherwise # they would also need to be converted in some way here self.lookup = tuple( (key, lookup[key]) for key in sorted(lookup) ) def get_col_spec(self, **kw): return "VARCHAR(255)" def bind_processor(self, dialect): # ... works with "self._lookup" ...
Where above, the cache key for
LookupType({"a": 10, "b": 20})
will be:>>> LookupType({"a": 10, "b": 20})._static_cache_key (<class '__main__.LookupType'>, ('lookup', (('a', 10), ('b', 20))))
Added in version 1.4.14: - added the
cache_ok
flag to allow some configurability of caching forTypeDecorator
classes.Added in version 1.4.28: - added the
ExternalType
mixin which generalizes thecache_ok
flag to both theTypeDecorator
andUserDefinedType
classes.See also
- impl: TypeEngine = Numeric(scale=2)¶
Module contents¶
Attribute types for model properties.